What's So Difficult About Task Difficulty?

How to maintain the cognitive demand and accessibility of math tasks!

Erica N. Mason

Outcomes

- Identify the features of worthwhile math tasks
- Understand how to make worthwhile tasks accessible while maintaining the cognitive demand of the task

Worthwhile Tasks

Why?

- Promote and reveal students' mathematical thinking
- Increases access
- Establishes a high level of rigor

Why?

- When students are presented with meaningful and challenging work
 - Increased engagement
 - Increased academic understanding

experience with success in challenging tasks that require perseverance and even involve setbacks along the way lead to stronger efficacy beliefs.

Feedback

- Encourage students to do the bulk of the intellectual work (aka: thinking)
- Prompt students' mathematical thinking
- Help students make sense of things

Feedback

DO listen

AVOID

taking over

prioritize kids' thinking

leading questions

ask "why?"

asking "how?"

What?

- Complex
- Non-algorithmic
- Require understanding concepts and making connections
- Require considerable cognitive effort ... may involve some anxiety

Smith & Stein (1998)

Give the fraction and percent for each decimal:

0.20 = ____ = ____

- 0.25 = ____ = ____
- 0.33 = _____ = ____
- 0.50 = ____ = ____
- 0.75 = ____ = ____

Create a real-world situation for the following problem:

$$\frac{2}{3} \times \frac{3}{4}$$

Solve the problem you have created without using the rule, and explain your solution.

Feedback: Model

DO

listen

AVOID

taking over

leading questions

prioritize kids' thinking

asking "how?"

ask "why?"

Ginsburg (1997) **12**

When?

Regularly

 Students should consider worthwhile tasks as part of what it means to "do math"

Who?

Everyone

From Meh to Meaningful

How?

- Reversibility
- Flexibility
- Generalizability

Reversibility

 Give students an answer or solution and have them create a problem that would result in that answer or solution.

Simplify. 4(3 + 5y) 12 + 20y

Find two expressions that simplify to:

12 + 20y

Flexibility

Asks the student to solve a problem in multiple ways.

-3 + (-8)

Feedback: Model

DO

listen

AVOID

taking over

leading questions

prioritize kids' thinking

asking "how?"

ask "why?"

Ginsburg (1997) 21

A De Co

Generalizability

 Transform problems that have a single answer to provide opportunities for patternbuilding, conjecturing, and generalizing mathematical facts and relationships

Fun Tees: Version 1 Fun Tees: Version 2 Fun Tees is offering a 30% discount on Fun Tees is offering a 30% discount on all merchandise. Find the amount of all merchandise. discount on a T-shirt that was originally Find the amount of discount on a priced at \$16. T-shirt that was originally priced at \$16. Suppose the T-shirt was originally priced at \$17, \$18, \$19, \$20, or \$50. Describe the amount of discount on T-shirts at each price. Write a number sentence that describes the amount of discount you will receive on any T-shirt that is offered at a 30% discount. Explain why this works. Smith & Stein (2018)

Discussion

What are the potential challenges you see with making these types of curricular adjustments?

Discussion

What instructional supports and routines could you put in place prior to introducing these more rigorous math tasks?

Psst. How can you anticipate challenging behavior and address things proactively?

Discussion

How might you collaborate with other professionals in your building or district to enact these adjustments?

Thanks!

Erica N. Mason ericamason@mail.missouri.edu

References

Dougherty, B., Bryant, D. P., Bryant, B. R., Darrough, R. L., & Pfannenstiel, K. H. (2015). Developing concepts and generalizations to build algebraic thinking: The reversibility, flexibility, and generalization approach. *Intervention in School and Clinic, 50*(5), 273–281.

Ginsburg, H. P. (1997). *Entering the child's mind: The clinical interview in psychological research and practice*. New York, NY: Cambridge University Press.

Gurganus, S. P. (2017). *Math instruction for students with learning problems* (2nd ed.). New York, NY: Routledge.

Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks: From research to practice. *Mathematics Teaching in the Middle School, 3*, 344–350.

Smith, M. S., & Stein, M. K., (2018). *5 practices for orchestrating productive mathematics discussions*. Reston, VA: National Council of Teachers of Mathematics.